
The Improvement for Virtual Machines Utilization on Cloud Computing
Environment

Hsu Mon kyi, Thinn Thu Naing

University of Computer Studies, Yangon
hsumonkyi.ucsy@gmail.com, ucsy21@most.gov.mm

Abstract

 Cloud computing is a scalable distributed
computing environment in which a large set of
virtualized computing resources, different
infrastructures, various development platforms and
useful software are delivered as a service to
customers as a pay‐as‐you-go manner usually over
the Internet. In cloud computing, virtual machines
offer unique advantages to the computing
community, such as Quality of Service (QoS)
guarantee, performance isolation, easy resource
management, and the on-demand deployment of
computing environments. Virtual machines need to
be schedule on the cloud for maximize utilization,
do the job faster and consume less energy. This
system presents the VM scheduling algorithms
using backfilling and gang scheduling approaches
to maximize the VM resource utilization.

1. Introduction

 Cloud computing delivers infrastructure,
platform, and software as services, which are
made available as subscription-based services in
a pay-as-you-go model to consumers. These
services in industry are respectively referred to
as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service
(SaaS). The importance of these services is
highlighted in a recent report from Berkeley as:
“Cloud computing, the long-held dream of
computing as a utility, has the potential to
transform a large part of the IT industry, making
software even more attractive as a service” [16]
 Clouds [3] aim to resource management and
scheduling to user applications for the high
performance computing community. So, Virtual
machine technology is adopted for high end
computing to achieve efficient computing resource
usage. Some technical work has reported that
virtual machine could be used for scientific
applications with tolerable performance
punishment [14], [19]. A virtual machine (VM) is a
software based machine emulation technique to
provide a desirable, on demand computing
environments for users. In virtual machine, an
effective scheduling strategy is important to meet

the desired quality of service parameters from both
user and system perspectives. Specifically, we
would like to reduce response and wait times for a
job, maximize the throughput and utilization of the
system, and be fair to all jobs regardless of their
size or execution times.

Various scheduling algorithms such as the
round-robin, backfilling, and gang scheduling
algorithms [20] can be implemented in the virtual
machine deployment process. In this paper, we
focus on implementing a utilization efficient
scheduling algorithm for high performance
computing where virtual machines are dynamically
provided for executing jobs. With these results, we
construct a backfilling gang scheduling system,
called BGS, which fills in holes in the Ousterhout
scheduling matrix [12] using backfilling. We
demonstrate that this combined strategy of
backfilling with gang scheduling (BGS)
consistently outperforms the other strategies
(backfilling and gang scheduling separately) from
the perspectives of responsiveness, slowdown,
fairness, and utilization.

The rest of this paper is organized as follows.
Section 2 describes the related work. In Section 3
presents virtualization technology on cloud system.
Section 4 presents scheduling strategies in virtual
machine. Section 5 describes modeling the VM
allocation. Section 6, we describe our proposed
system. Finally section 7 concludes the paper.

2. Related Work

To deal with underutilization in batch queuing
systems, backfilling techniques such as EASY are
often used. Jobs can jump ahead in the queue if
they do not delay the start time of the first job in
the queue. Conservative backfilling approaches [8]
require that upon a backfill operation, no job in the
queue is delayed in order to maintain fairness. A
problem with these approaches is their reliance on
user estimates of job runtimes which are often
incorrect [15]. Several techniques have been
proposed to model this runtime in order to tackle
this problem [17].
 Our work is related to gang scheduling [12],
which also departs from batch scheduling by
allowing time-sharing of compute resources. In
gang scheduling, tasks in a parallel job are

executed during the same synchronized time slices
across cluster nodes. This requires distributed
synchronized context-switching, which may require
significant overhead and thus long time slices,
although solutions have been proposed [3]. In this
work we simply achieve time-sharing in an
uncoordinated and low-overhead manner via VM
technology. A second drawback of gang scheduling
is memory pressure, i.e., the overhead of swapping
to disk [1].
 In this paper we present a new scheduling
strategy consisting of a combination of gang
scheduling together with backfilling approach.
Moreover, we show that the performance of gang
scheduling is dependent on the selected parameters
of the scheduler and that significant gains are
achievable. In addition, we address the problem of
finding a suitable criterion for measuring the
scheduler performance.

3. Virtualization Technology on Cloud

System

 The increasing availability of VM technologies
has enabled the creation of customized
environments atop physical infrastructures. The use
of VMs in distributed systems brings several
benefits such as: (i) server consolidation, allowing
workloads of several under-utilized servers to be
placed in fewer machines; (ii) the ability to create
VMs to run legacy code without interfering in other
applications' APIs; (iii) improved security through
the creation of sandboxes for running applications
with questionable reliability; (iv) dynamic
provision of VMs to services, allowing resources to
be allocated to applications on the fly; and (v)
performance isolation, thus allowing a provider to
offer some levels of guarantees and better quality
of service to customers' applications.
 Virtualization technology has two main
concepts, virtual machine and virtual machine
monitor (Hypervisor). Virtual Machine (VM) is a
software artifact that executes other software in the
same manner as the machine for which the software
is developed and executed. Virtual Machine
Monitor is software that supports multiple virtual
machines on the same resource. Existing systems
based on virtual machines can manage a cluster of
computers by enabling users to create virtual
workspaces [7] or virtual clusters [9] atop the
actual physical infrastructure. Clusters of nodes
managed by a resource allocation system that relies
on VM technology. The system responds to job
requests by creating collections of VM instances on
which to run the jobs. Each VM instance runs on a
physical node under the control of a VM monitor
that can limit its resource usage. All VM Monitors
are in turn under the control of a VM Manager that

specifies resource usage constraints for all
instances. The VM Manager can also preempt
instances, and migrate instances among physical
nodes.
 VM technology allows for accurate sharing of
hardware resources among VM instances while
achieving performance isolation. The Xen VM
monitor [13] enables CPU-sharing and
performance isolation in a way that is low-
overhead, accurate, and rapidly adaptable.
Furthermore, sharing can be arbitrary. For instance,
the Xen Credit CPU scheduler can allow three VM
instances to each receive 33.3% of the total CPU
resource of a dual-core machine [4]. This allows a
multi-core physical node to be considered as an
arbitrarily time-shared single core. Virtualization of
other resources, such as I/O resources, is more
challenging but is an active area of research [11].

 Figure 1.Basic concepts of virtualization technology

4. Scheduling Strategies in Virtual

Machine

 The following strategies are considered for
scheduling user request that arrive at the system.

4.1Backfilling and Gang Scheduling

 Backfilling only considered space sharing
scheduling strategies. Backfilling can be used with
queuing policies such as First come first serve
(FCFS), Shortest job first (SJF), Best fit (BFit),
Worst fit (WFit). With backfilling, we can bypass
the priority order imposed by the policy, as long as
the execution of a lower priority job does not delay
the start time of higher priority jobs. However, at
higher utilizations FCFS performs better than the
other policies [18]. A weakness of backfilling is
difficult to estimate job execution time and
fragmentation may occur.

Another approach gang scheduling, tasks in a
parallel job are executed during the same
synchronized time slices across cluster nodes. Note
that it is possible to schedule some jobs in multiple
rows (multiple virtual machines).This can be
applied together with any prioritization policy. In
particular, we have shown in previous work [10]
that gang scheduling is very effective in improving
the performance of FCFS policies. This is in

agreement with the results in [18]. We have also
shown that gang scheduling is particularly effective
in improving system responsiveness, as measured
by average job wait time. However, gang
scheduling alone is not as effective as backfilling in
improving average job response time.

Gang scheduling and backfilling are two
optimization techniques that operate on orthogonal
axes, space for backfilling and time for gang
scheduling. It is tempting to combine both
techniques in one scheduling system. In principle
this can be done by treating each of the virtual
machines created by gang scheduling as a target for
backfilling. Backfilling with gang scheduling
strategy can compare different scheduling
strategies. This strategy will consistently
outperforms the other strategies (backfilling and
gang scheduling separately) from the perspectives
of responsiveness, slowdown, fairness, and
utilization.

5. Modeling the VM Allocation

 This section shows simple scheduling scenario
to clear illustrate the scheduling policy. Schedules
for space- and time-sharing of a parallel machine
can be represented by an Ousterhout matrix, in
which the rows represent time slices and the
columns represent processors. In this figure, a host
with two CPU cores receives request for hosting
two VMs, and each one requiring two cores and
running four tasks units: t1, t2, t3 and t4 to be
run in VM1, while t5, t6, t7, and t8 to be run in
VM2.
 In Figure 2(a), a space-shared policy is used
for allocating VMs, but a time-shared policy is
used for allocating individual task units within
VM. Hence, during a VM lifetime, all the tasks
assigned to it dynamically context switch until
their completion. This allocation policy enables
the task units to be scheduled at an earlier time,
but significantly affecting the completion time of
task units that are ahead the queue.
 In Figure 2(b), a time-shared scheduling is used
for VMs, and a space-shared one is used for task
units. In this case, each VM receives a time slice
of each processing core, and then slices are
distributed to task units on space-shared basis.
As the core is shared, the amount of
processing power available to the VM is
comparatively lesser than the aforementioned
scenarios. As task unit assignment is space-
shared, hence only one task can be allocated to
each core, while others are queued.

 (a)

 (b)
Figure 2. Effects of space and time sharing scheduling
policies on task execution: (a) Space-shared for VMs
and time-shared for tasks, (b) Time-shared for VMs,
space-shared for tasks

6. Proposed System Architecture

 This section describes the proposed system for
virtual machine scheduling.VM scheduling
techniques on cloud environment are power
efficient, utilization efficient and cost efficient
(VM co-location). This system emphasizes on
resource utilization efficient VM scheduling.
 The proposed system supports two levels. First,
at the VM level and second the host level. At the
VM level, the VMs assign specific amount of the
available processing power to the individual task
units that are hosted within its execution engine. At
the host level, it is possible to specify how much of
the overall processing power of each core in a host
will be assigned to each VM. At each level, this
system uses backfilling with gang scheduling
policies.

Figure3. System Architecture of the proposed
system

Cloud user

Jobn - - - Job2 Job1
VM Level
Scheduler

Hardware

Host level Scheduler

VM1

os

App App

VM2

os

App App

VMM

Physical Machine 2

Hardware

Host level Scheduler

VM1

os

App App

VM2

os

App App

VMM

Physical Machine3

Hardware

Host level Scheduler

VM1

os

App App

VM2

os

App App

VMM

Physical Machine 1

7. Conclusion

 It has been widely accepted that virtual
machines can be employed as computing resources
to build a distributed system for high performance
computing. So, virtual machine scheduling and
resource allocation is essential in cloud computing
environment for maximize resource utilization and
minimize job’s execution time. This paper present
an integrated strategy called BackfillingGang
Scheduling (BGS), which combines backfilling (on
a FCFS job arrival queue) with gang scheduling.
We show how this integrated strategy outperforms
a system which uses just backfilling or just gang
scheduling over sufficient to significantly improve
the flow time and increase the machine utilization.

8. References

[1] A. Batat and D. G. Feitelson, “Gang scheduling with
memory considerations,” in Proc. of the 14th Intl. Parallel and
Distributed Processing Symp., 2000, pp. 109–114.

[2] A. Hori, H. Tezuka, and Y. Ishikawa, “Overhead analysis of
preemptive gang scheduling,” in Proc. of the 4th Workshop on
Job Scheduling Strategies for Parallel Processing, ser. LNCS,
1998, vol. 1459, pp. 217–230.

[3] A. Weiss. Computing in the clouds. NetWorker,
11(4):16–25, Dec. 2007.

[4] D. Gupta, L. Cherkasova, and A. Vahdat, “Comparison of
the Three CPU Schedulers in Xen,” ACM SIGMETRICS
Performance Evaluation Review, vol. 35, no. 2, pp. 42–51,
2007.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong. Theory and Practice in Parallel Job
Scheduling.In IPPS’97 Workshop on Job Scheduling Strategies
for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science, pages 1–34. Springer-Verlag, April 1997.

[6] D. G. Feitelson and A. M. Weil. Utilization and
predictability in scheduling the IBM SP2 with backfilling .
In 12th International Parallel Processing Symposium, pages
542–546,April 1998.

[7] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life in
the Grids. Scientic Programming, 13(4):265-275, 2006.

[8] Feitelson, D.G., Weil, A.: Utilization and predictability in
scheduling the ibm sp2 with backlling. In: IPPS '98: Proceedings
of the 12th. International Parallel Processing Symposium on
International Parallel Processing Symposium, Washington, DC,
USA, IEEE Computer Society (1998) 542

[9] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B.
Sotomayor, and X. Zhang. Virtual clusters for Grid
communities. In 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID 2006), pages 513-520,
Washington, DC, USA, May 2006. IEEE Computer Society.

[10] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik. An
Evaluation of Parallel Job Scheduling for ASCI Blue-Pacific . In
Proceedings of SC99, Portland, OR, November 1999. IBM
Research Report RC21559.

[11] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in
Virtual Machine Monitors,” in Proc. of the ACM
SIGPLAN/SIGOPS Intl. Conf. on Virt. Exec. Environments,
2008.

[12] J. K. Ousterhout. Scheduling Techniques for Concurrent
Systems. In Third International Conference on Distributed
Computing Systems, pages 22–30, 1982.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art
of Virtualization,” in Proc. of the 19th ACM Symp.on Operating
System Principles, 2003, pp. 164–177.

[14] L. Wang, M. Kunze, and J. Tao, “Performance evaluation
of virtual machine based Grid workflow system,” Concurrency
and Computation: Practice and Experience, vol. 20, no. 15, pp.
1759–1771, 2008.

[15] Mualem, A.W., Feitelson, D.G.: Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2
with backflling. IEEE Transactions on Parallel and Distributed
Systems 12 (2001) 529-543.

[16] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M.
Zaharia. Above the Clouds: A Berkeley View of Cloud
computing. Technical Report No. UCB/EECS-2009-28,
University of California at Berkley, USA, Feb. 10, 2009.

[17] Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backflling using
system-generated predictions rather than user runtime estimates.
IEEE Trans. Parallel Distrib. Syst. 18(6) (2007) 789-803.

[18] U. Schwiegelshohn and R. Yahyapour. Improving First-
Come-First-Serve Job Scheduling by Gang Scheduling. In
IPPS’98 Workshop on Job Scheduling Strategies for Parallel
Processing,March 1998.

[19] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for
high performance computing with virtual machines,” in
Proceedings of the 20th Annual International Conference on
Supercomputing, 2006, pp.125–134.

[20] Y. Wiseman and D. Feitelson, “Paired gang scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 14,
no. 6, pp. 581–592,2003.

